<T>LAPACK 0.1.2
C++ Template Linear Algebra PACKage
Loading...
Searching...
No Matches
potri.hpp
Go to the documentation of this file.
1
4//
5// Copyright (c) 2025, University of Colorado Denver. All rights reserved.
6//
7// This file is part of <T>LAPACK.
8// <T>LAPACK is free software: you can redistribute it and/or modify it under
9// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
10
11#ifndef TLAPACK_POTRI_HH
12#define TLAPACK_POTRI_HH
13
18
19namespace tlapack {
20
46template <TLAPACK_SMATRIX matrix_t>
48{
50 tlapack_check(nrows(A) == ncols(A));
51
52 potrf2(uplo, A);
53
55
57}
58
59} // namespace tlapack
60
61#endif // TLAPACK_POTRI_HH
constexpr internal::LowerTriangle LOWER_TRIANGLE
Lower Triangle access.
Definition types.hpp:188
constexpr internal::UpperTriangle UPPER_TRIANGLE
Upper Triangle access.
Definition types.hpp:186
constexpr internal::NonUnitDiagonal NON_UNIT_DIAG
The main diagonal is not assumed to consist of 1's.
Definition types.hpp:220
Uplo
Definition types.hpp:50
void potri(Uplo uplo, matrix_t &A)
Computes the Inverse of a Hermitian positive definite matrix A using recursive algorithms.
Definition potri.hpp:47
int potrf2(uplo_t uplo, matrix_t &A, const EcOpts &opts={})
Computes the Cholesky factorization of a Hermitian positive definite matrix A using the recursive alg...
Definition potrf2.hpp:73
int trtri_recursive(uplo_t uplo, Diag diag, matrix_t &C, const EcOpts &opts={})
TRTRI computes the inverse of a triangular matrix in-place Input is a triangular matrix,...
Definition trtri_recursive.hpp:48
#define tlapack_check(cond)
Throw an error if cond is false.
Definition exceptionHandling.hpp:98
int lauum_recursive(const Uplo &uplo, matrix_t &C)
LAUUM is a specific type of inplace HERK.
Definition lauum_recursive.hpp:45
Computes the Cholesky factorization of a Hermitian positive definite matrix A using the recursive alg...
typename traits::real_type_traits< Types..., int >::type real_type
The common real type of the list of types.
Definition scalar_type_traits.hpp:113