10#ifndef TLAPACK_QZ_SWEEP_HH
11#define TLAPACK_QZ_SWEEP_HH
62 enable_if_t<is_complex<type_t<alpha_t>>,
bool> =
true>
82 const idx_t n = ncols(
A);
158 for (idx_t j = 0; j <
n_block; ++j) {
165 for (idx_t j = 0; j <
n_block; ++j) {
172 for (idx_t j = 0; j <
n_block; ++j) {
184 auto T = slice(
B2,
range{i + 1, i + 3},
range{i, i + 3});
198 for (idx_t j = 0; j < i + 3; ++j) {
204 B2(i + 1, i) = (
TA)0;
205 B2(i + 2, i) = (
TA)0;
207 for (idx_t j = 0; j < min(i + 4,
n_block); ++j) {
214 for (idx_t j = 0; j <
n_block; ++j) {
242 for (idx_t j = i + 1; j <
n_block; ++j) {
250 for (idx_t j = i + 1; j <
n_block; ++j) {
258 for (idx_t j = 0; j <
n_block; ++j) {
295 idx_t
iblock = std::min<idx_t>(
ilo - i, nrows(
WV));
322 idx_t
iblock = std::min<idx_t>(
ilo - i, nrows(
WV));
336 idx_t
iblock = std::min<idx_t>(n - i, nrows(
WV));
350 idx_t
iblock = std::min<idx_t>(n - i, nrows(
WV));
391 for (idx_t i =
i2; i <
i2 +
n_pos; ++i) {
394 auto T = slice(
B2,
range{i + 1, i + 3},
range{i, i + 3});
408 for (idx_t j = 0; j < i + 3; ++j) {
414 B2(i + 1, i) = (
TA)0;
415 B2(i + 2, i) = (
TA)0;
417 for (idx_t j = 0; j < i + 4; ++j) {
424 for (idx_t j = 0; j <
n_block; ++j) {
452 for (idx_t j = i + 1; j <
n_block; ++j) {
460 for (idx_t j = i + 1; j <
n_block; ++j) {
468 for (idx_t j = 0; j <
n_block; ++j) {
548 idx_t
iblock = std::min<idx_t>(n - i, nrows(
WV));
563 idx_t
iblock = std::min<idx_t>(n - i, nrows(
WV));
597 for (idx_t i =
i2; i <
n_block - 1; ++i) {
600 auto T = slice(
B2,
range{i + 1, i + 3},
range{i, i + 3});
613 for (idx_t j = 0; j < i + 3; ++j) {
620 B2(i + 1, i) = (
TA)0;
621 B2(i + 2, i) = (
TA)0;
623 for (idx_t j = 0; j < min(
n_block, i + 4); ++j) {
631 for (idx_t j = 0; j <
n_block; ++j) {
647 B2(i + 1, i) = (
TA)0.;
652 auto b2 = slice(
B2,
range{0, i + 1}, i + 1);
654 auto a1 = col(
A2, i);
655 auto a2 = col(
A2, i + 1);
658 auto z1 = col(
Zc2, i);
659 auto z2 = col(
Zc2, i + 1);
687 for (idx_t j = i + 1; j <
n_block; ++j) {
695 for (idx_t j = i + 1; j <
n_block; ++j) {
703 for (idx_t j = 0; j <
n_block; ++j) {
729 for (idx_t j = i + 1; j <
n_block; ++j) {
735 for (idx_t j = i + 1; j <
n_block; ++j) {
741 for (idx_t j = 0; j <
n_block; ++j) {
821 idx_t
iblock = std::min<idx_t>(n - i, nrows(
WV));
835 idx_t
iblock = std::min<idx_t>(n - i, nrows(
WV));
constexpr internal::Forward FORWARD
Forward direction.
Definition types.hpp:381
constexpr internal::GeneralAccess GENERAL
General access.
Definition types.hpp:180
constexpr internal::ConjTranspose CONJ_TRANS
conjugate transpose
Definition types.hpp:264
constexpr internal::ColumnwiseStorage COLUMNWISE_STORAGE
Columnwise storage.
Definition types.hpp:414
constexpr internal::NoTranspose NO_TRANS
no transpose
Definition types.hpp:260
constexpr T conj(const T &x) noexcept
Extends std::conj() to real datatypes.
Definition utils.hpp:100
#define TLAPACK_SMATRIX
Macro for tlapack::concepts::SliceableMatrix compatible with C++17.
Definition concepts.hpp:899
#define TLAPACK_VECTOR
Macro for tlapack::concepts::Vector compatible with C++17.
Definition concepts.hpp:906
void multishift_QZ_sweep(bool want_t, bool want_q, bool want_z, size_type< matrix_t > ilo, size_type< matrix_t > ihi, matrix_t &A, matrix_t &B, const alpha_t &alpha, const beta_t &beta, matrix_t &Q, matrix_t &Z)
multishift_QR_sweep performs a single small-bulge multi-shift QR sweep.
Definition multishift_qz_sweep.hpp:63
void laset(uplo_t uplo, const type_t< matrix_t > &alpha, const type_t< matrix_t > &beta, matrix_t &A)
Initializes a matrix to diagonal and off-diagonal values.
Definition laset.hpp:38
void larfg(storage_t storeMode, type_t< vector_t > &alpha, vector_t &x, type_t< vector_t > &tau)
Generates a elementary Householder reflection.
Definition larfg.hpp:73
void lacpy(uplo_t uplo, const matrixA_t &A, matrixB_t &B)
Copies a matrix from A to B.
Definition lacpy.hpp:38
void inv_house3(const matrix_t &A, vector_t &v, type_t< vector_t > &tau)
Inv_house calculates a reflector to reduce the first column in a 2x3 matrix A from the right to zero.
Definition inv_house3.hpp:44
int lahqz_shiftcolumn(const matrix_t &A, const matrix_t &B, vector_t &v, complex_type< type_t< matrix_t > > s1, complex_type< type_t< matrix_t > > s2, type_t< matrix_t > beta1, type_t< matrix_t > beta2)
Given a 2-by-2 or 3-by-3 matrix pencil (A,B), lahqz_shiftcolumn calculates a multiple of the product:...
Definition lahqz_shiftcolumn.hpp:56
void rotg(T &a, T &b, T &c, T &s)
Construct plane rotation that eliminates b, such that:
Definition rotg.hpp:39
void rot(vectorX_t &x, vectorY_t &y, const c_type &c, const s_type &s)
Apply plane rotation:
Definition rot.hpp:44
void gemm(Op transA, Op transB, const alpha_t &alpha, const matrixA_t &A, const matrixB_t &B, const beta_t &beta, matrixC_t &C)
General matrix-matrix multiply:
Definition gemm.hpp:61
typename traits::real_type_traits< Types..., int >::type real_type
The common real type of the list of types.
Definition scalar_type_traits.hpp:113