12#ifndef TLAPACK_LAHQZ_HH
13#define TLAPACK_LAHQZ_HH
87 const idx_t n = ncols(
A);
104 if (
nh <= 0)
return 0;
113 const idx_t
itmax = 30 * std::max<idx_t>(10,
nh);
143 "The QZ algorithm failed to compute all the eigenvalues"
144 " in a total of 30 iterations per eigenvalue. Elements"
145 " i:ihi of alpha and beta contain those eigenvalues which have "
146 "been successfully computed.");
183 tst =
tst + abs(
A(i - 1, i - 2));
203 abs1(
B(i, i) *
A(i - 1, i) -
A(i, i) *
B(i - 1, i));
205 abs1(
B(i, i) *
A(i - 1, i - 1) -
A(i, i) *
B(i - 1, i - 1));
229 for (idx_t j = i; j >
istart; j--) {
230 rotg(
B(j - 1, j),
B(j - 1, j - 1), c,
s);
231 B(j - 1, j - 1) =
zero;
245 auto z2 = col(
Z, j - 1);
251 rotg(
A(j, j - 1),
A(j + 1, j - 1), c,
s);
252 A(j + 1, j - 1) =
zero;
263 auto q2 = col(
Q, j + 1);
309 for (idx_t i = 0; i < n; ++i) {
325 for (idx_t i = 0; i < n; ++i) {
447 auto T = slice(
B,
range{i, i + 3},
range{i, i + 3});
452 conj(
v[0]) *
A(i, i - 1) +
conj(
v[1]) *
A(i + 1, i - 1);
456 abs1(
A(i + 1, i + 2)))) {
470 auto T = slice(
B,
range{i, i + 3},
range{i, i + 3});
480 v[1] =
A(i + 1, i - 1);
481 v[2] =
A(i + 2, i - 1);
484 A(i + 1, i - 1) =
zero;
485 A(i + 2, i - 1) =
zero;
500 for (idx_t j = i; j <
istop_m; ++j) {
504 A(i + 1, j) =
A(i + 1, j) -
sum *
t2;
505 A(i + 2, j) =
A(i + 2, j) -
sum *
t3;
508 for (idx_t j = i; j <
istop_m; ++j) {
512 B(i + 1, j) =
B(i + 1, j) -
sum *
t2;
513 B(i + 2, j) =
B(i + 2, j) -
sum *
t3;
517 for (idx_t j = 0; j < n; ++j) {
518 sum =
Q(j, i) +
v2 *
Q(j, i + 1) +
v3 *
Q(j, i + 2);
527 auto T = slice(
B,
range{i + 1, i + 3},
range{i, i + 3});
542 for (idx_t j =
istart_m; j < i + 3; ++j) {
543 sum =
B(j, i) +
v2 *
B(j, i + 1) +
v3 *
B(j, i + 2);
552 sum =
A(j, i) +
v2 *
A(j, i + 1) +
v3 *
A(j, i + 2);
559 for (idx_t j = 0; j < n; ++j) {
560 sum =
Z(j, i) +
v2 *
Z(j, i + 1) +
v3 *
Z(j, i + 2);
578 auto T = slice(
B,
range{i, i + 2},
range{i, i + 2});
579 auto x = slice(
v,
range{0, 2});
585 A(i, i - 1) =
A(i, i - 1) *
c2;
590 A(i + 1, i - 1) =
zero;
603 auto q2 = col(
Q, i + 1);
611 B(i + 1, i) = (
TA)0.;
623 auto z2 = col(
Z, i + 1);
constexpr internal::FrobNorm FROB_NORM
Frobenius norm of matrices.
Definition types.hpp:347
constexpr internal::Forward FORWARD
Forward direction.
Definition types.hpp:381
constexpr internal::ColumnwiseStorage COLUMNWISE_STORAGE
Columnwise storage.
Definition types.hpp:414
constexpr real_type< T > real(const T &x) noexcept
Extends std::real() to real datatypes.
Definition utils.hpp:71
constexpr T conj(const T &x) noexcept
Extends std::conj() to real datatypes.
Definition utils.hpp:100
constexpr real_type< T > abs1(const T &x)
1-norm absolute value, |Re(x)| + |Im(x)|
Definition utils.hpp:133
constexpr real_type< T > imag(const T &x) noexcept
Extends std::imag() to real datatypes.
Definition utils.hpp:86
#define TLAPACK_CSMATRIX
Macro for tlapack::concepts::ConstructableAndSliceableMatrix compatible with C++17.
Definition concepts.hpp:961
#define TLAPACK_VECTOR
Macro for tlapack::concepts::Vector compatible with C++17.
Definition concepts.hpp:906
auto lange(norm_t normType, const matrix_t &A)
Calculates the norm of a matrix.
Definition lange.hpp:38
void svd22(const T &f, const T &g, const T &h, T &ssmin, T &ssmax, T &csl, T &snl, T &csr, T &snr)
Computes the singular value decomposition of a 2-by-2 real triangular matrix.
Definition svd22.hpp:55
void larfg(storage_t storeMode, type_t< vector_t > &alpha, vector_t &x, type_t< vector_t > &tau)
Generates a elementary Householder reflection.
Definition larfg.hpp:73
void inv_house3(const matrix_t &A, vector_t &v, type_t< vector_t > &tau)
Inv_house calculates a reflector to reduce the first column in a 2x3 matrix A from the right to zero.
Definition inv_house3.hpp:44
int lahqz_shiftcolumn(const matrix_t &A, const matrix_t &B, vector_t &v, complex_type< type_t< matrix_t > > s1, complex_type< type_t< matrix_t > > s2, type_t< matrix_t > beta1, type_t< matrix_t > beta2)
Given a 2-by-2 or 3-by-3 matrix pencil (A,B), lahqz_shiftcolumn calculates a multiple of the product:...
Definition lahqz_shiftcolumn.hpp:56
int lahqz(bool want_s, bool want_q, bool want_z, size_type< matrix_t > ilo, size_type< matrix_t > ihi, matrix_t &A, matrix_t &B, alpha_t &alpha, beta_t &beta, matrix_t &Q, matrix_t &Z)
lahqz computes the eigenvalues of a matrix pair (H,T), where H is an upper Hessenberg matrix and T is...
Definition lahqz.hpp:60
void rotg(T &a, T &b, T &c, T &s)
Construct plane rotation that eliminates b, such that:
Definition rotg.hpp:39
void rot(vectorX_t &x, vectorY_t &y, const c_type &c, const s_type &s)
Apply plane rotation:
Definition rot.hpp:44
void scal(const alpha_t &alpha, vector_t &x)
Scale vector by constant, .
Definition scal.hpp:30
#define tlapack_error(info, detailedInfo)
Error handler.
Definition exceptionHandling.hpp:142
#define tlapack_check_false(cond)
Throw an error if cond is true.
Definition exceptionHandling.hpp:113
void lahqz_eig22(const A_t &A, const B_t &B, complex_type< T > &alpha1, complex_type< T > &alpha2, T &beta1, T &beta2)
Computes the generalized eigenvalues of a 2x2 pencil (A,B) with B upper triangular.
Definition lahqz_eig22.hpp:35
typename traits::real_type_traits< Types..., int >::type real_type
The common real type of the list of types.
Definition scalar_type_traits.hpp:113