12#ifndef TLAPACK_LAHQR_HH
13#define TLAPACK_LAHQR_HH
71 enable_if_t<is_complex<type_t<vector_t>>,
bool> =
true,
72 enable_if_t<is_real<type_t<matrix_t>>,
bool> =
true>
98 const idx_t n = ncols(
A);
109 if (
nh <= 0)
return 0;
115 const idx_t
itmax = 30 * std::max<idx_t>(10,
nh);
134 "The QR algorithm failed to compute all the eigenvalues"
135 " in a total of 30 iterations per eigenvalue. Elements"
136 " i:ihi of w contain those eigenvalues which have been"
137 " successfully computed.");
171 tst =
tst + abs(
A(i - 1, i - 2));
306 conj(
v[0]) *
A(i, i - 1) +
conj(
v[1]) *
A(i + 1, i - 1);
310 abs1(
A(i + 1, i + 2)))) {
318 const idx_t
nr = std::min<idx_t>(3,
istop - i);
333 v[1] =
A(i + 1, i - 1);
334 if (
nr == 3)
v[2] =
A(i + 2, i - 1);
340 A(i + 1, i - 1) =
zero;
341 if (
nr == 3)
A(i + 2, i - 1) =
zero;
357 for (idx_t j = i; j <
istop_m; ++j) {
361 A(i + 1, j) =
A(i + 1, j) -
sum *
t2;
362 A(i + 2, j) =
A(i + 2, j) -
sum *
t3;
366 sum =
A(j, i) +
v2 *
A(j, i + 1) +
v3 *
A(j, i + 2);
373 for (idx_t j = 0; j < n; ++j) {
374 sum =
Z(j, i) +
v2 *
Z(j, i + 1) +
v3 *
Z(j, i + 2);
383 for (idx_t j = i; j <
istop_m; ++j) {
386 A(i + 1, j) =
A(i + 1, j) -
sum *
t2;
390 sum =
A(j, i) +
v2 *
A(j, i + 1);
396 for (idx_t j = 0; j < n; ++j) {
397 sum =
Z(j, i) +
v2 *
Z(j, i + 1);
417 enable_if_t<is_complex<type_t<vector_t>>,
bool> =
true,
418 enable_if_t<is_complex<type_t<matrix_t>>,
bool> =
true>
419int lahqr(
bool want_t,
421 size_type<matrix_t> ilo,
422 size_type<matrix_t> ihi,
427 using TA = type_t<matrix_t>;
428 using real_t = real_type<TA>;
429 using idx_t = size_type<matrix_t>;
432 const real_t zero(0);
433 const real_t eps = ulp<real_t>();
434 const real_t small_num = safe_min<real_t>() / ulp<real_t>();
435 const idx_t non_convergence_limit = 10;
436 const real_t dat1(0.75);
437 const real_t dat2(-0.4375);
439 const idx_t n = ncols(A);
440 const idx_t nh = ihi - ilo;
450 if (nh <= 0)
return 0;
451 if (nh == 1) w[ilo] = A(ilo, ilo);
456 const idx_t itmax = 30 * std::max<idx_t>(10, nh);
470 for (idx_t iter = 0; iter <= itmax; ++iter) {
476 if (istart + 1 >= istop) {
477 if (istart + 1 == istop) w[istart] = A(istart, istart);
495 for (idx_t i = istop - 1; i > istart; --i) {
496 if (
abs1(A(i, i - 1)) <= small_num) {
503 real_t tst =
abs1(A(i - 1, i - 1)) +
abs1(A(i, i));
506 tst = tst + abs(A(i - 1, i - 2));
509 tst = tst + abs(A(i + 1, i));
512 if (
abs1(A(i, i - 1)) <= eps * tst) {
524 const real_t aij =
abs1(A(i, i - 1));
525 const real_t aji =
abs1(A(i - 1, i));
526 real_t ab = (aij > aji) ? aij : aji;
527 real_t ba = (aij < aji) ? aij : aji;
528 real_t aa = max(
abs1(A(i, i)),
abs1(A(i, i) - A(i - 1, i - 1)));
529 real_t bb = min(
abs1(A(i, i)),
abs1(A(i, i) - A(i - 1, i - 1)));
531 if (ba * (ab / s) <= max(small_num, eps * (bb * (aa / s)))) {
540 if (istart + 1 >= istop) {
542 w[istart] = A(istart, istart);
549 TA a00, a01, a10, a11;
551 if (k_defl % non_convergence_limit == 0) {
553 real_t s = abs(A(istop - 1, istop - 2));
554 if (istop > ilo + 2) s = s + abs(A(istop - 2, istop - 3));
555 a00 = dat1 * s + A(istop - 1, istop - 1);
562 a00 = A(istop - 2, istop - 2);
563 a10 = A(istop - 1, istop - 2);
564 a01 = A(istop - 2, istop - 1);
565 a11 = A(istop - 1, istop - 1);
567 complex_type<real_t> s1;
568 complex_type<real_t> s2;
570 if (
abs1(s1 - A(istop - 1, istop - 1)) >
571 abs1(s2 - A(istop - 1, istop - 1)))
580 idx_t istart2 = istart;
581 if (istart + 2 < istop) {
582 for (idx_t i = istop - 2; i > istart; --i) {
583 TA h00 = A(i, i) - s1;
584 TA h10 = A(i + 1, i);
585 rotg(h00, h10, cs, sn);
588 eps * (
abs1(A(i, i - 1)) +
abs1(A(i, i + 1)))) {
595 for (idx_t i = istart2; i < istop - 1; ++i) {
597 TA h00 = A(i, i) - s1;
598 TA h10 = A(i + 1, i);
599 rotg(h00, h10, cs, sn);
600 if (i > istart) A(i, i - 1) = A(i, i - 1) * cs;
603 TA h00 = A(i, i - 1);
604 TA h10 = A(i + 1, i - 1);
605 rotg(h00, h10, cs, sn);
607 A(i + 1, i - 1) = zero;
611 for (idx_t j = i; j < istop_m; ++j) {
612 TA tmp = cs * A(i, j) + sn * A(i + 1, j);
613 A(i + 1, j) = -
conj(sn) * A(i, j) + cs * A(i + 1, j);
617 for (idx_t j = istart_m; j < min(i + 3, istop); ++j) {
618 TA tmp = cs * A(j, i) +
conj(sn) * A(j, i + 1);
619 A(j, i + 1) = -sn * A(j, i) + cs * A(j, i + 1);
624 for (idx_t j = 0; j < n; ++j) {
625 TA tmp = cs * Z(j, i) +
conj(sn) * Z(j, i + 1);
626 Z(j, i + 1) = -sn * Z(j, i) + cs * Z(j, i + 1);
constexpr internal::Forward FORWARD
Forward direction.
Definition types.hpp:381
constexpr internal::ColumnwiseStorage COLUMNWISE_STORAGE
Columnwise storage.
Definition types.hpp:414
constexpr T conj(const T &x) noexcept
Extends std::conj() to real datatypes.
Definition utils.hpp:100
constexpr real_type< T > abs1(const T &x)
1-norm absolute value, |Re(x)| + |Im(x)|
Definition utils.hpp:133
constexpr real_type< T > imag(const T &x) noexcept
Extends std::imag() to real datatypes.
Definition utils.hpp:86
#define TLAPACK_CSMATRIX
Macro for tlapack::concepts::ConstructableAndSliceableMatrix compatible with C++17.
Definition concepts.hpp:961
#define TLAPACK_VECTOR
Macro for tlapack::concepts::Vector compatible with C++17.
Definition concepts.hpp:906
void lahqr_eig22(T a00, T a01, T a10, T a11, complex_type< T > &s1, complex_type< T > &s2)
Computes the eigenvalues of a 2x2 matrix A.
Definition lahqr_eig22.hpp:34
int lahqr(bool want_t, bool want_z, size_type< matrix_t > ilo, size_type< matrix_t > ihi, matrix_t &A, vector_t &w, matrix_t &Z)
lahqr computes the eigenvalues and optionally the Schur factorization of an upper Hessenberg matrix,...
Definition lahqr.hpp:73
void larfg(storage_t storeMode, type_t< vector_t > &alpha, vector_t &x, type_t< vector_t > &tau)
Generates a elementary Householder reflection.
Definition larfg.hpp:73
void lahqr_schur22(T &a, T &b, T &c, T &d, complex_type< T > &s1, complex_type< T > &s2, T &cs, T &sn)
Computes the Schur factorization of a 2x2 matrix A.
Definition lahqr_schur22.hpp:44
int lahqr_shiftcolumn(const matrix_t &H, vector_t &v, complex_type< type_t< matrix_t > > s1, complex_type< type_t< matrix_t > > s2)
Given a 2-by-2 or 3-by-3 matrix H, lahqr_shiftcolumn calculates a multiple of the product: (H - s1*I)...
Definition lahqr_shiftcolumn.hpp:41
void rotg(T &a, T &b, T &c, T &s)
Construct plane rotation that eliminates b, such that:
Definition rotg.hpp:39
void rot(vectorX_t &x, vectorY_t &y, const c_type &c, const s_type &s)
Apply plane rotation:
Definition rot.hpp:44
#define tlapack_error(info, detailedInfo)
Error handler.
Definition exceptionHandling.hpp:142
#define tlapack_check_false(cond)
Throw an error if cond is true.
Definition exceptionHandling.hpp:113
typename traits::real_type_traits< Types..., int >::type real_type
The common real type of the list of types.
Definition scalar_type_traits.hpp:113